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Abstract— Nowcasting refers to high-resolution mete-
orological forecasting on a short period, with the aim to
identify imminent critical situations. Indeed, numerical
weather forecasting is normally not detailed enough
and may take too long to calculate for this scenario.
Nowcasting techniques typically analyze radar echoes
and range from simple advection algorithms to more
complex methods that attempt to model growth and
decay of precipitation fields. These forecasts are highly
relevant for a variety of industrial, agricultural, and
leisure activities. Radarmeteo, a company providing me-
teorological services, uses nowcasting to assist the work
of their forecasters and to provide customized solutions
to business customers. To increase the value of their
products, Radarmeteo was interested in 1) augmenting
the usability of their nowcasts by shortening the com-
putation times and 2) examine more recent methods
to improve their quality. In this work, we compare
four popular nowcasting algorithms with their current
proprietary method. We selected 193 interesting events
from a radar mosaic of the Italian peninsula and evaluate
multiple metrics between the observed and forecast fields.
The tested methods resulted generally superior to the
existing proprietary algorithm, since they manage to
reduce the number of missed events and false alarms,
and to increase the spatial accuracy of the forecasts.
Moreover, the chosen implementation of these methods
reduced the computation time by one or two orders of
magnitude.
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I Introduction
In meteorology, nowcasting indicates forecasts for

the next few hours (i.e., 0 h to 6 h) on a spatial resolu-
tion of a few kilometers. These forecasts are based on
remote sensing of the atmospheric conditions via radar
and, to lesser degree, via satellite. Although numeri-
cal weather prediction (NWP) produces more reliable
forecasts on a longer time range, it is still lacking at
smaller temporal and spatial scales among other reasons
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due to its high computational complexity (Simonin
et al. 2017; Pulkkinen et al. 2020). Nowcasting systems,
on the other hand, use radar or satellite images as
immediate snapshots of the state of the atmosphere
and, by combining multiple of such snapshots, estimate
where precipitation systems are likely to move in the
near future.

One of the simplest such approaches is an extrap-
olation algorithm that consists in moving forward the
current radar echoes for each forecast time. This is the
Lagrangian persistence method, which works under the
assumption that no growth or decay factors act along
the advection path (Germann and Zawadzki 2002;
Pulkkinen et al. 2020). This assumption is reasonable
for large scale stratiform systems, but inadequate for
convective situations. More sophisticated nowcasting
approaches have been proposed in literature to over-
come this limitation. For instance, the forecast skill
can be improved by limiting the prediction horizon
of small scale features. The underlying idea is that a
precipitation field can be described as a hierarchy of
structures (Lovejoy and Schertzer 1995) from small
(< 100 m) to large (> 200 km) scales and that the
lifetime of each such level is proportional to its scale
(Schertzer et al. 1997). Nowcasting methods that use
this idea do not attempt to forecast structures beyond
their expected lifetime; the result is a reflectivity field
that gradually becomes smoother as the forecast time
increases (Seed 2003; Turner et al. 2004; Ruzanski
and Chandrasekar 2011). One way of dealing with
this smoothing process is to introduce some stochastic
perturbations that represent initiation, growth and decay
of precipitation fields (Pulkkinen et al. 2019b; Bowler
et al. 2006; Pulkkinen et al. 2019a). In this way,
rather than one fixed prediction, the model produces an
ensemble of potential realizations of the future, which
can be interpreted in probabilistic terms. Lastly, there
are hybrid methods that attempt to have the best of
two worlds by merging more long-term NWP with
the extrapolation-based approach (Liguori and Rico-
Ramirez 2012). In essence, these use the prediction
obtained by the nowcasting algorithm in the very short
term (e.g., one hour) and then gradually transition to a



NWP prediction in the subsequent 2 h to 6 h time range.
All these methods require to estimate the so called

“motion field”: the velocity field that models the ad-
vection of the precipitation systems. Comprehensive
reviews of the motion field algorithms were presented
by Reyniers (2008) and Liguori and Rico-Ramirez
(2014). A possible procedure consists in using the wind
as estimated by NWP models (Pierce et al. 2004). Other
methods, instead, exclusively use a sequence of radar
images. For instance, the “area tracking algorithm”
divides a radar image into a grid of boxes. Each box is
then forced to match with the box in the subsequent
radar image following with which it has the maxi-
mum cross correlation (Rinehart and Garvey 1978).
This procedure showed good results in widespread and
persistent rain situations. Instead, for thunderstorms
and convective scenarios the “cell tracking methods”
are more efficient (Liguori and Rico-Ramirez 2014).
These approaches first select an individual radar echo
and store its characteristics (e.g., reflectivity, position,
occupied area, and so on). These features are then used
to detect similar patterns in the following images (Li
et al. 1995).

Besides the obvious public and academic interest
in weather forecasting, the importance of weather for
economic and social activities has also led to interest
from the private sector. An example is represented by
Radarmeteo, a private company in the Veneto region of
Italy that provides a variety of tailored meteorological
services to business customers. One of their services
consists exactly in providing short-term forecasts and
derived products. Their current nowcasting algorithm
consists in moving the radar echoes along the field
obtained by the wind predicted by global forecast
system (GFS). Radarmeteo was interested in improving
this algorithm along two main lines. First, the company
wanted to augment the usefulness of the nowcasts
by reducing the current computation times, as about
40 min were required to provide forecasts for the next
3 h at a 20 min interval. Moreover, since the method
tended to overestimate the speed of the precipitation
systems giving spatial mismatching between the fore-
casted and observed rain fields, Radarmeteo was inter-
ested in evaluating more recent nowcasting techniques
to improve the quality of their forecasts.

To accomplish these tasks we selected four mo-
tion field estimators: Lucas-Kanade (LK) (Lucas and
Kanade 1981), Proesmans (Proesmans et al. 1994),
Dynamic and Adaptive Radar Tracking of Storms
(DARTS) (Ruzanski et al. 2011), and Variational

Echo Tracking (VET) (Germann and Zawadzki 2002).
Among the available nowcasting algorithms we decided
to test three deterministic methods and one ensem-
ble approach: Extrapolation (Germann and Zawadzki
2002), Spectral Prognosis (S-PROG) (Seed 2003), Au-
toregressive Nowcasting Vertically Integrated Liquid
(ANVIL) (Pulkkinen et al. 2020), and Short-Term
Ensemble Prediction System (STEPS) (Bowler et al.
2006). The aim of this work is to compare these recent
algorithms with the current proprietary method of the
company to understand whether the quality of the fore-
cast can be improved. The implementations for all these
algorithms are available in the open source Pysteps
library (Pulkkinen et al. 2019b), a Python framework
for precipitation nowcasting. We developed an importer
plugin to load the proprietary radar mosaic of the
Italian Peninsula within this framework and further
scripts to execute the experimental evaluation. For our
experiments, 193 precipitation events were selected in
the period from September 2019 to September 2020.
The forecasts obtained from all possible combinations
of motion field estimator and nowcasting method were
compared with the proprietary nowcasting method by
means of several categorical, continuous, and spatial
metrics.

This work is organized as follows. The algorithms
that will be considered in our experiments will be
explained in Section II. We continue with our experi-
mental setup in Section III, after which we will present
the results in Section IV. Finally, we conclude the paper
in Section V.

II Methods
In the following we both describe the nowcasting

algorithms and the motion field estimators used in this
work.

II-A Nowcasting Algorithms
The algorithms included in our experiments are a

standard baseline, three deterministic methods, and one
ensemble method. They can be described as follows.

1) Eulerian persistence: this method produces a
prediction for the future that is identical to the current
observation (Germann and Zawadzki 2002). Therefore,
the forecasted reflectivity field Ψ for each successive
time is obtained by replicating the observed reflectivity
field, such that

Ψ(t+ τ,x) = Ψ(t,x) , (1)

where τ is the prediction interval. This method is often
included as a trivial baseline.
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2) Extrapolation: this method is known as La-
grangian persistence since the intensity of the reflectiv-
ity field remains constant in the Lagrangian coordinate
frame (Germann and Zawadzki 2002). The temporal
evolution of precipitation is solely driven by advection
by means of a precalculated velocity vector v = α/τ ,
where α is the displacement vector. It follows that the
forecast reflectivity field can be written as

Ψ(t+ τ,x+α) = Ψ(t,x) . (2)

Obviously, this method does not allow for growth and
dissipation processes.

3) S-PROG: this is an advection-based nowcast-
ing method that models the dissipation processes by
avoiding tracking small scale systems beyond their
lifetime (Seed 2003). The rain field is represented as
a hierarchical set of features (i.e., multifractal frame-
work); since large features evolve more slowly than
small features, the former are propagated longer in time
than the latter. Formally, the logarithm of the radar
reflectivity is decomposed into a spectral cascade via
the Fast Fourier Transform (FFT), so that each level of
this cascade represents a feature of the original field at
a given scale. A band-pass filter is then applied to select
the appropriate frequencies. This procedure limits the
propagation of small systems in time, which leads
to spatial smoothing in the forecasts. The temporal
evolution of a system at the jth cascade level is then
modeled by means of a second order autoregression

Ψ̂j(t,x) = φj,1Ψ̂j(t− τ,x) + φj,2Ψ̂j(t− 2τ,x) ,
(3)

where j ∈ {1, ..., N} is one of the N cascade levels,
Ψ̂ represents the Fourier component of the reflectivity
field at the jth level normalized by using the mean and
standard deviation of that level, and φj,1 and φj,2 are
the estimated autoregressive coefficients.

4) ANVIL: this approach (Pulkkinen et al.
2020) combines two previous methods, namely
RadVil (Boudevillain et al. 2006) and S-PROG (Seed
2003). The first algorithm solves a mass balance
equation applied to Vertically Integrated Liquid (VIL),
which is a superficial density, taking into account a
source, S, and a dissipation, D, term:

dVIL
dt

=
∂VIL
∂t
− u∂VIL

∂x
− v∂VIL

∂y
= S(t)−D(t) .

(4)
Using only the rain-rate information and under certain
simplifying assumptions, the previous equation can be
solved numerically. However, this approach does not

consider the predictability limits of some precipitation
systems. ANVIL attempts to solve this issue by adopt-
ing the approach proposed by S-PROG. Therefore, VIL
is decomposed into a cascade of multiple scales, and
unnecessary frequencies are removed. As before, an
autoregressive model of the second order is used for
the temporal evolution of each cascade level.

5) STEPS: this is an ensemble method that can be
considered as an extension of the previous S-PROG
algorithm (Seed 2003; Bowler et al. 2006). To deal with
the smoothing process that affects S-PROG with an
increasing forecast time, Equation 3 has been modified
to include a noise term at each of the j cascade levels:

Ψ̂j(t,x) = φj,1Ψ̂j(t− τ,x) + φj,2Ψ̂j(t− 2τ,x) + εj(t,x)

∀j ∈ {1, ..., N}.
(5)

The stochastic term εj(t,x) represents the uncertainty
associated with the development of the precipitation
systems. By considering several realizations of the
noise term, an ensemble of forecasts can be created.

II-B Motion Field Estimators
All previous nowcasting algorithms except for Eu-

lerian persistence are advection-based methods. This
means that they model the movement of a precipitation
system after a time τ via its velocity field v = (u, v). A
possible approach consists in simply using the forecast
of the wind provided by NWP. On the other hand, some
more recent methods estimate the motion field directly
from a sequence of radar “images”. The following
methods are built upon this idea.

1) LK: under the assumption that the reflectiv-
ity remains constant during the motion, this optical
flow technique (Lucas and Kanade 1981) describes
the spatio-temporal intensity changes in terms of the
velocity field as

Ixu+ Iyv + It = 0 , (6)

where Ix, Iy, and It represent the variation of the in-
tensity with respect to space and time. This equation is
underdetermined when considering a single pixel, but it
can be made overdetermined by assuming that it holds
for a neighborhood of pixels instead. A unique velocity
field is then found via the least squares criterion.

2) Proesmans: this method solves Equation 6 with
the addition of a smoothness constraint that makes the
problem solvable without recurring to least squares
(Proesmans et al. 1994). The estimated velocity field
is used to find a correspondence between the pixels
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of the first and second images. If important changes
in brightness are registered, the field is corrected by
taking into account the image gradients.

3) DARTS: this method calculates the flux of a pre-
cipitation system from a temporal sequence of radar im-
ages by solving the continuity equation in the frequency
domain with an ordinary least squares (Ruzanski et al.
2011). The growth and decay terms are neglected in
the equation.

4) VET: in this case the motion field is obtained
by minimizing a cost function with two constraints:
the residuals of the reflectivity conservation equation
and a smoothing penalty function (Germann and Za-
wadzki 2002). The first requirement is used as a weak
constraint, as reflectivity is not necessarily preserved in
case of growth and dissipation processes.

III Experimental Setup
In the following we provide the details about the

data employed in this work, the setting of the used al-
gorithms, and the metrics selected for our experiments.

III-A Data
The radar mosaic used in our work aggregates the

data from 26 radar stations located in the Italian
territory and 14 radar stations in the neighboring na-
tions. The radars in the Italian territory are operated
by regional environmental protection agencies (Italian:
Agenzia regionale per la protezione ambientale), the
Italian Civil Protection Department, and the ENAV
company, which is responsible for the provision of air
traffic services. The foreign radars are operated by their
respective national departments. Figure 1 shows the
position of all radar stations. Where needed, the infor-
mation provided by these agencies were converted in
vertical maximum intensity (VMI) (i.e., the maximum
reflectivity recorded in the column above each point
of fixed longitude and latitude) and, lastly, merged in
a shared reference system. The final mosaic extends
from 6◦0′E and 48◦0′N to 19◦0′E and 36◦1′N with a
resolution of 0.01◦. The radar data are available at a
time interval of 10 min.

We considered 193 precipitation events that were
selected in the period from 15/09/2019 to 14/09/2020.
For each hour of this time interval, we calculated the
distribution of the precipitation cumulative referred to
the previous three hours. If the 99th percentile of the
distribution exceeds a threshold of 10 mm, the event
is included in our analysis set. When two or more
episodes fall in the same day we considered only

Fig. 1: Location of the 40 stations that provide the
radar data to build the mosaic of the Italian peninsula.

the one with the highest cumulative rainfall. For each
selected event we considered the data collected in the
preceding 4 h at timesteps of 10 min. The data from the
first hour were reserved for the estimation of the motion
field. The first datum of the second hour is used in the
experiments as “the last observed field”, whereas the
final three hours leading up to the event were employed
in the test phase to compare the observed rainfall with
the forecast.

III-B Algorithms
To forecast the reflectivity field on the selected data

we consider all the combinations between the four
motion field estimators (i.e., LK, Proesmans, DARTS,
and VET) and the four nowcasting algorithms (i.e.,
Extrapolation, S-PROG, ANVIL, and STEPS). For each
event, the forecasts extend to the subsequent 3 h at
an interval of 10 min. The implementation adopted
for these methods is provided in the Pysteps library
(Pulkkinen et al. 2019b).

The number of radar images required to build the
motion field varies with the methods as follows:

• LK: current field + 2 previous fields;
• DARTS: current field + 5 previous fields;
• VET: current field + 2 previous fields;
• Proesmans: current field + 1 previous field.

For the STEPS nowcasting method we choose an
ensemble of 20 members. The forecasts reported for
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this algorithm in the following analysis come from the
mean of the members.

The 16 combinations were compared with the Eu-
lerian persistence baseline and with the proprietary al-
gorithm of Radarmeteo. This is an extrapolation-based
nowcasting method that extracts the local maxima from
the input reflectivity field and other random points.
This sub-sampled field is then moved in the direction
of the wind as forecast by the GFS model. Lastly, an
interpolation is made to reconstruct the final reflectivity
field. Since the computation of this algorithm is time
expensive, the predictions were calculated at steps of
20 min.

III-C Verification
Several metrics have been calculated to compare the

skill of the nowcasting approaches, as done in related
studies (Pulkkinen et al. 2020; Pulkkinen et al. 2019b;
Mandapaka et al. 2012). Since a single validation
technique does not provide a comprehensive picture of
an algorithm’s performance, we employed three classes
of verification metrics:
• continuous, which compare the entire spectrum of

the reflectivity scale;
• categorical, which evaluate the ability to distin-

guish between different classes of precipitation;
• spatial, which evaluate the location of the precip-

itation.
For the continuous verification, we calculated the

normalized mean squared error (NMSE):

NMSE =

∑N
i=1(Zi − Ẑi)

2∑N
i=1(Zi + Ẑi)2

, (7)

where Zi and Ẑi represent the reflectivity of the ith

pixel in the observed and forecast fields and N is
the total number of pixels. We also evaluated the β
coefficient, an estimation of the slope of the linear
regression of the forecasts versus the observations, that
is defined as:

β =
so,f
s2o

, (8)

where so,f is the covariance between the observed and
forecast fields, and s2o is the variance of the observed
field. Ideally β should be equal to 1.

For the categorical verification, a reflectivity thresh-
old Zt is defined to make the problem binary. The
pixels below this threshold (Z < Zt) are classified as
“non-rainy”, the pixels above the threshold (Z ≥ Zt)
are considered as “rainy”. The possible outcomes when
comparing such classification with the ground truth is

Forecast
Observation Z ≥ Zt Z < Zt

Z ≥ Zt hits (H) misses (M )
Z < Zt false alarm (F ) correct negative (R)

TABLE 1: Contingency table in a binary classification
problem.

reported in the contingency table (see Table 1). This
table was then used to define the critical success index
(CSI), probability of detection (POD), false alarm ratio
(FAR), and false alarm rate (FA) as follows:

CSI = H/(H +M + F ),

POD = H/(H +M),

FAR = F/(H + F ),

FA = F/(R+ F ).

(9)

The CSI is the ratio of correctly forecast rainy events
over all the forecast rainy events plus misses, whereas
the POD is the fraction of the rainy events that are
correctly forecast. Both metrics range from 0 (i.e.,
no skill) to 1 (i.e., perfect skill). The FAR and FA
indices are often confused: the former is the fraction of
forecasts that are false alarms, the latter is the fraction
of observed “non-rainy” events that are false alarms.
Both ranges from 1 (i.e., no skill) to 0 (i.e., perfect
skill).

The metrics presented to this point were all based on
a pixel-to-pixel comparison between the forecast and
observed fields. Since this approach is very restrictive,
new indicators that take into account a neighborhood
of pixels have been proposed in literature. In this study
we evaluate the fractions skill score (FSS), a spatial
verification score that compares the pixels inside a
sliding window in the observed and forecast fields as
follows:

FSS = 1−
1

nxny

∑nx
i=1

∑ny

j=1 (Po(i, j)− Pf (i, j))
2

1
nxny

(∑nx
i=1

∑ny

j=1 Po(i, j)2 +
∑nx

i=1

∑ny

j=1 Pf (i, j)2
) ,

(10)
where nx and ny indicate the two sides of the reference
area, and Po and Pf are the fraction of pixels inside
the area that exceeds a certain reflectivity threshold in
the observation and forecast. This metric ranges from
0 (i.e., no skill) to 1 (i.e., perfect skill).

The reflectivity thresholds chosen to calculate the
categorical and spatial metrics are 15 dBZ, 25 dBZ, and
35 dBZ. The sides of the reference square considered
for FSS are 2 pixels, 8 pixels, and 32 pixels, where
1 pixel is equal to about 1 km.
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IV Results
The evaluation of the computation time required to

obtain the forecasts is one of the relevant parameters
to take into account in nowcasting since it determines
the usefulness of the forecast itself. Moreover, it is
equally important to determine the relative strengths
of a specific method. In the following both points are
addressed.

IV-A Computation Time
Table 2 reports the mean, maximum, and minimum

computation times required by each algorithm to pro-
duce 3 h of forecasts at an interval of 10 min. Due
to hardware heterogeneity the reported numbers are
indicative. In the case of the proprietary method only
a rough estimation of the mean computation time was
available and it refers to forecasts calculated at steps of
20 min. We observe that the computation time required
by the new algorithms is one or two orders of mag-
nitude less than the time employed by the proprietary
method. This is a relevant result since one of the goal of
this work was to augment the usefulness of the forecasts
by shortening the computation time with respect to the
proprietary algorithm. Even more important, we note
that all methods but STEPS can be computed before a
new radar image arrives. Among the proposed methods,
Extrapolation is obviously computationally less expen-
sive since it only moves the reflectivity field forward
in time without performing any further calculation. On
the other hand, STEPS, being an ensemble method,
is the slowest since it requires the computation of
20 realizations. Focusing on the computation of the
motion field estimators, we note that DARTS, LK, and
Proesmans show similar calculation time, whereas VET
is more computationally expensive.

IV-B Continuous Verification
To understand the influence of the motion field

estimator on the forecast skill, we compare the trend
of the NMSE and the β coefficient with respect to the
lead time for each algorithm in Figure 2. The bold lines
represent the mean skill of the algorithms, averaged
over the events, and the 25th and 75th percentiles
are highlighted by the dashed lines. As expected, for
each algorithm, NMSE and β respectively increase and
decrease with the lead time, as result of the natural
degeneration of the forecast. Focusing on each single
nowcasting method, both indices do not reveal relevant
differences when different motion fields are employed.
Since LK and VET consistently show slightly better

Name Time [s]
Mean Max Min

Extrapolation DARTS 36.59 47.71 29.14
Extrapolation LK 35.52 43.77 25.19
Extrapolation Proesmans 45.24 48.72 42.46
Extrapolation VET 129.79 178.89 87.68

S-PROG DARTS 51.45 54.58 48.92
S-PROG LK 53.81 58.03 44.78
S-PROG Proesmans 69.53 75.87 65.58
S-PROG VET 256.74 343.66 174.46

ANVIL DARTS 71.55 78.46 67.43
ANVIL LK 74.41 82.81 65.52
ANVIL Proesmans 88.37 97.44 85.57
ANVIL VET 274.90 360.22 194.27

STEPS 20 DARTS 642.38 1546.69 413.32
STEPS 20 LK 625.35 1427.66 400.19
STEPS 20 Proesmans 653.93 1458.51 431.95
STEPS 20 VET 726.85 1559.81 514.29

proprietary 2400.00 – –

TABLE 2: Mean, maximum, and minimum computa-
tion times required by each algorithm on the selected
193 events. For the proprietary algorithm only an
estimation of the mean time was available.

performance than the other methods, in the following
analyses we only report the results obtained when VET
is used.

To compare the skill of the nowcasting methods, we
report in Figure 3 the mean trend of the continuous
metrics as function of the lead time. The proposed
methods outperform the proprietary algorithm at each
lead time. ANVIL shows a superior mean NMSE up to
a lead time of 70 min, after which it is outperformed by
S-PROG and STEPS. The performance of ANVIL con-
tinues to degrade with longer lead times; after 120 min
it performs worse than the simple Extrapolation and
after 160 min its NMSE is higher than that of the
Eulerian baseline. The comparison of the β score is
far simpler: ANVIL shows the best skill, followed by
S-PROG, STEPS, and Extrapolation.

This analysis highlights that, at least for the first hour
of forecast, the method that approximates the observed
reflectivity field most accurately is ANVIL. However,
the results of β highlight that all algorithms underesti-
mates the reflectivity field. This can be a side effect of
the experimental protocol: since the last observed field
is located at the beginning of a precipitation event, it is
challenging to correctly forecast the following growth.
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(a) Extrapolation
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(c) ANVIL
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(d) STEPS
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(f) S-PROG
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Fig. 2: normalized mean squared error (NMSE) (first row) and β (second row) obtained for (a) and (e)
Extrapolation, (b) and (f) Spectral Prognosis (S-PROG), (c) and (g) Autoregressive Nowcasting Vertically
Integrated Liquid (ANVIL), and (d) and (h) Short-Term Ensemble Prediction System (STEPS), each combined
with the four available motion field methods. The continuous curves represents the mean of the scores over the
193 events, the dashed lines are the 25th and 75th percentiles.

Lastly, we note that although the approach followed
by the proprietary method is conceptually similar to
Extrapolation, the skills of these two algorithms are
quite different. It is difficult to pinpoint the exact
cause of this discrepancy, though a possible explanation
may lie in the source of the motion field estimate.
Indeed, it has been noted that image-based estimates
can indirectly take orographic effects into account by
empirically detecting a blockage of the precipitation
systems from the sequence of radar images (Mandapaka
et al. 2012).

IV-C Categorical Verification
For each reflectivity threshold mentioned in Sec-

tion III-C we calculated the categorical metrics reported
in Equation 9 for each event and each lead time. The
performance of CSI, POD, and FAR, averaged over the
events, is reported in Figure 4 for each nowcasting algo-
rithm as a function of the lead time. The forecast skill of
each algorithm decreases when either the lead time or
the reflectivity threshold increase (Golding 1998). The
former observation is attributed to the chaotic nature

of such systems, which naturally brings to a forecast
worsening. The latter consideration depends on the fact
that the areas that exceed a higher threshold are more
localized.

Focusing on the single methods, the skill of the
simple Extrapolation approach is generally better than
the Eulerian baseline, though they perform similarly
for high lead time or reflectivity thresholds. At 15 dBZ
ANVIL shows a CSI that is only slightly better than the
Eulerian baseline, thus indicating either a high quantity
of missed events and/or false alarms. Both options are
possible, since at 15 dBZ we observe a FAR and POD
respectively higher and lower than the other methods,
except for the proprietary algorithm. The high FAR is a
symptom of the presence of false alarms, whereas a low
POD highlights missed events. The situation improves
for higher reflectivity thresholds where ANVIL starts
to outperform the other methods showing better CSI
and POD values, although we still register false alarms.
On the other hand, at 15 dBZ and 25 dBZ the CSI of
S-PROG and STEPS is similar at least up to a lead time
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Fig. 3: For each nowcasting method the mean (a) normalized mean squared error (NMSE) and (b) β metrics,
averaged over the 193 events, are reported.

of 40 min, later S-PROG keeps a better skill. However,
looking at the other indices, STEPS reports a higher
number of missed events, but also less false alarms
than S-PROG. As the reflectivity threshold augments,
both algorithms have more difficulty in the recognition
of the precipitation systems.

We can reach similar conclusions by analyzing the
behavior of POD versus FA reported in Figure 5
where we consider 20 min, 40 min, 60 min, and 120 min
as lead time. Each point represents the mean value
over the events and the horizontal and vertical lines
depict the 25th and 75th percentiles for both indices.
At 15 dBZ the best POD and FA are obtained by
respectively S-PROG and STEPS. However, the inter-
method variability is very low at least up to 60 min.
The only exception is represented by the proprietary
method, which consistently shows the highest quantity
of missed events. The situation is similar at 25 dBZ,
but the behavior of ANVIL and S-PROG becomes quite
comparable. At 35 dBZ, instead, ANVIL shows the best
POD, but also the highest FA.

Summarizing, on the basis of these categorical scores
ANVIL outperforms the other methods at higher re-
flectivity thresholds at the cost of a higher number
of false alarms. On the other hand, the light rain
events are better recognized by S-PROG and STEPS.
Despite these differences, the new methods generally
outperform the proprietary algorithm.

IV-D Spatial Verification
For each reflectivity threshold and size of the spatial

neighborhood (see Section III-C), we report in Figure 6
the mean FSS metric for each nowcasting algorithm,
averaged over the events, as function of the lead time.
As expected, the FSS consistently increases with the
size of the neighborhood and decreases with the reflec-
tivity threshold and the lead time.

At 15 dBZ and 25 dBZ the proposed methods always
outperform the proprietary algorithm and the Eulerian
baseline, at least up to 120 min. In line with the pre-
vious categorical analyses, at 15 dBZ S-PROG shows
the best skill. However, as the reflectivity threshold
increases, its performance decays: at 25 dBZ it is first
comparable (at 2 pixels and 8 pixels) and later worse (at
32 pixels) than the ANVIL and Extrapolation methods,
while at 35 dBZ it is outperformed by the Eulerian
baseline. Also STEPS follows a similar trend, however
it performs below the Eulerian baseline even at 25 dBZ
up to a lead time of 120 min. On the other hand, ANVIL
shows an increasing skill as the reflectivity threshold
augments outperforming the other methods at 35 dBZ.

The good performance of Extrapolation at 32 pixels
can be attributed to the fact that simple advection is
sufficient to model the field at big scale. Instead, at
smaller scales, the terms of growth and decay, which
we found in the other algorithms, become more relevant
to model the precipitation systems. A possible expla-
nation for the loss of skill of S-PROG and STEPS at
35 dBZ was hinted at previously; for this threshold the
precipitation areas are localized and, by nature, these
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Fig. 4: For each nowcasting method, the mean (a) critical success index (CSI), (b) probability of detection (POD),
and (c) false alarm ratio (FAR) metrics, averaged over the 193 events, are reported.

algorithms tend to cut these “fine details” as the lead
time increases.

V Conclusions
The aim of this work was to improve the nowcasting

product of Radarmeteo, an Italian company that pro-
vides meteorological services, by identifying possible
algorithms that can 1) augment the usefulness of the
forecasts by shortening the computation times, and
2) improve the quality of the forecasts. To address

these challenges we compared four popular algorithms
with the proprietary method currently in use and a
straightforward baseline method. Since the proposed
algorithms are advection-based, we also selected four
motion field estimators, and we combined them with
the four nowcasting approaches. Both for the motion
field estimators and the nowcasting algorithms we
adopted the implementation provided in Pysteps, an
open source library for nowcasting. For the tests, we
selected 193 interesting events in the last year from the
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Fig. 5: For each nowcasting method we report the behavior of probability of detection (POD) versus false alarm
rate (FA) at (a) 20 min, (b) 40 min, (c) 60 min, and (d) 120 min as lead time. Each point represents the mean
value, averaged over the 193 events, and the horizontal and vertical lines depict the 25th and 75th percentiles for
both indices.

Italian radar mosaic; for each event we calculated 3 h
of forecasts at steps of 10 min.

To compare the skill of the algorithms we adopted
several verification metrics: continuous, to perform a
full-spectrum comparison between the intensities of ob-
served and forecast fields; categorical, to evaluates the
ability of the methods to distinguish between different
classes of precipitation; and spatial, to estimate the pre-
cision of the location of the precipitation. On the basis
of these evaluations we concluded that all proposed al-
gorithms represent an improvement with respect to the
existing proprietary method from different perspectives:
better representativeness of the reflectivity, a reduction
of the number of missed events and false alarms, and a
gain in the spatial accuracy of the forecasts. S-PROG
and STEPS showed good skills, both from a categorical
and a spatial perspective, for events characterized by
low reflectivity fields, whereas ANVIL performed bet-
ter at higher reflectivity, although this comes at the cost

of an increase in false alarms. Lastly from the results
of the continuous metrics it emerges that, at least for
the first 70 min, the methods that better approximate
the observed reflectivity field is ANVIL. Instead, the
choice of the motion field estimator did not appear to
influence the overall performance of the nowcasting
methods. Finally, the chosen implementation of the
tested methods allow to reduce the computation times
by one or two orders of magnitude.
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Fig. 6: Mean fractions skill score (FSS), averaged over the 193 events, calculated for each nowcasting method
by setting as threshold (a) 15 dBZ, (b) 25 dBZ, and (c) 35 dBZ. In each case three spatial extensions have been
considered.
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dine Chaumerliac. “Evaluation of RadVil, a
radar-based very short-term rainfall forecasting
model”. In: Journal of Hydrometeorology 7.1
(2006), pp. 178–189.

[2] Neill E. Bowler, Clive E. Pierce, and Alan
W. Seed. “STEPS: A probabilistic precipitation

forecasting scheme which merges an extrap-
olation nowcast with downscaled NWP”. In:
Quarterly Journal of the Royal Meteorological
Society: A journal of the atmospheric sciences,
applied meteorology and physical oceanography
132.620 (2006), pp. 2127–2155.

[3] Urs Germann and Isztar Zawadzki. “Scale-
dependence of the predictability of precipitation
from continental radar images. Part I: Descrip-

11



tion of the methodology”. In: Monthly Weather
Review 130.12 (2002), pp. 2859–2873.

[4] B. W. Golding. “Nimrod: A system for gen-
erating automated very short range forecasts”.
In: Meteorological Applications: A journal of
forecasting, practical applications, training tech-
niques and modelling 5.1 (1998), pp. 1–16.

[5] L. Li, W. Schmid, and J. Joss. “Nowcasting of
motion and growth of precipitation with radar
over a complex orography”. In: Journal of ap-
plied meteorology 34.6 (1995), pp. 1286–1300.

[6] Sara Liguori and Miguel Angel Rico-Ramirez.
“Quantitative assessment of short-term rainfall
forecasts from radar nowcasts and MM5 fore-
casts”. In: Hydrological Processes 26.25 (2012),
pp. 3842–3857.

[7] Sara Liguori and Miguel Angel Rico-Ramirez.
“A review of current approaches to radar-based
quantitative precipitation forecasts”. In: Interna-
tional Journal of River Basin Management 12.4
(2014), pp. 391–402.

[8] S. Lovejoy and D. Schertzer. “Multifractals and
rain”. In: New uncertainty concepts in hydrology
and water resources 270 (1995), pp. 61–103.

[9] Bruce D. Lucas and Takeo Kanade. “An iterative
image registration technique with an application
to stereo vision”. In: (1981), 674–679.

[10] Pradeep V. Mandapaka, Urs Germann, Luca
Panziera, and Alessandro Hering. “Can La-
grangian extrapolation of radar fields be used for
precipitation nowcasting over complex Alpine
orography?” In: Weather and Forecasting 27.1
(2012), pp. 28–49.

[11] C. E. Pierce, E. Ebert, A. W. Seed, M. Sleigh,
C. G. Collier, N. I. Fox, N. Donaldson, J. W.
Wilson, R. Roberts, and C. K. Mueller. “The
nowcasting of precipitation during Sydney 2000:
an appraisal of the QPF algorithms”. In: Weather
and Forecasting 19.1 (2004), pp. 7–21.

[12] Marc Proesmans, Luc Van Gool, Eric Pauwels,
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