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Abstract 7 

This study analyses the climate variability in the Mediterranean region, leveraging the capabilities of 8 

Long Short-Term Memory (LSTM) neural networks to investigate the effects of environmental forcings 9 

on temperature and precipitation patterns over land in the period 1901-2020. The Mediterranean region, 10 

characterized by its distinct climatic zones, provides an excellent opportunity to examine the 11 

heterogeneous impacts of various forcings, including carbon dioxide levels, aerosol concentrations, 12 

solar irradiance, and climatic indices. The LSTM neural network based on these forcings can 13 

successfully reconstruct the observed variability and trends of the Mediterranean land temperature 14 

(particularly at the monthly scale). Our analysis highlights the significant role of carbon dioxide as a 15 

primary driver of temperature variations across the Mediterranean, underscoring its influence across 16 

annual, seasonal, and monthly timescales. In contrast, precipitation patterns present considerable 17 

challenges being modelled by Long Short-Term Memory neural networks, reflecting their high 18 

variability and the intricate nature of their determinants. The application of this kind of networks in this 19 

context not only enhances our understanding of the Mediterranean's climate system, but also 20 

demonstrates the potential of advanced neural network models in climate science and developing more 21 

informed adaptation and mitigation strategies in the face of ongoing climate change. Our research 22 

contributes to the broader discourse on climate dynamics in the Mediterranean, providing valuable 23 

insights for future studies and policymaking efforts. 24 
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1 Introduction 28 

The Mediterranean region, characterized by its unique geographical features and climatic conditions, 29 

has long been recognized as a critical area for understanding the complexities of climate variability and 30 

change. This significance stems not only from the Mediterranean's vulnerability to climate change 31 

impacts, including temperature fluctuations and precipitation variability, but also from its role as a 32 

natural laboratory for studying the broader implications of these changes on ecosystems, water 33 

resources, agriculture, and human societies (Alì et al, 2022). Amidst this backdrop, the scientific 34 

community has intensified efforts to unravel the complex mechanisms driving climate variability in the 35 

Mediterranean, focusing on the influence of environmental forcings such as carbon dioxide (CO2) 36 

levels, aerosol concentrations, climatic indices, and solar irradiance (e.g. Lionello., 2012; Cherif et al., 37 

2021). 38 

The Mediterranean's diverse climatic responses to environmental forcings can be further understood by 39 

recognizing its subdivision into three distinct latitudinal ranges, defined by longitudinal coordinates 40 

between 10°W and 35°E and latitudinal coordinates between 29°N and 45°N (Figure 1). This 41 

subdivision provides a nuanced framework for capturing the heterogeneous nature of climate variability 42 

at subregional scale.  The Northern Mediterranean, extending from the northern coastlines to 43.5°N 43 

latitude, is characterized by temperate influences and includes regions such as the northern parts of the 44 

Iberian Peninsula, Southern France, and parts of the Balkans. It is markedly distinct from the warmer 45 

Central zone, which extends from 37.1°N down to the southern coastlines, encompassing areas like the 46 

Central Mediterranean and parts of Anatolia. The Southern Mediterranean, reaching towards the 47 

northern borders of the Sahara and including regions such as the Western and Eastern Maghreb and the 48 

Levant, experiences more arid conditions and extends from 29°N up to 37.1°N. This detailed zonal 49 
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approach enhances our understanding of the differential impacts of CO2 levels, aerosol concentrations, 50 

climatic indices, and solar irradiance across these climatic zones, providing insights into the region's 51 

climate system dynamics. This subdivision is not merely a geographical delineation but serves as a 52 

critical variable in the climatic analysis, offering insights into the differential impacts of CO2 levels, 53 

aerosol concentrations, climatic indices, and solar irradiance across these climatic zones. By integrating 54 

this zonal approach into our Long Short-Term Memory (LSTM) network model, we aim to enhance the 55 

resolution and relevance of our findings, thereby providing a more detailed and regionally specific 56 

understanding of climatic changes within the Mediterranean basin. 57 

LSTM networks, a class of artificial neural networks, have emerged as a powerful tool in the analysis 58 

of temporal sequences and are particularly adept at modelling long-term dependencies in complex 59 

datasets (Emmert-Streib et al., 2020). Their capability to learn from sequences of data makes LSTM 60 

networks an ideal candidate for exploring the dynamics of climate systems, where the relationships 61 

between variables are not only nonlinear but also exhibit variability across multiple time scales. This 62 

research endeavour aims to leverage the potential of LSTM networks to dissect the impact of various 63 

forcing variables on temperature and precipitation patterns in the continental Mediterranean region over 64 

the period 1901-2020. 65 

 66 
Figure 1. Map of the Mediterranean region highlighting three key areas: Northern Mediterranean (43.5°N-47.5°N), Central 67 

Mediterranean (37.1°N - 43.5°N) and Southern Mediterranean (29°N-37.1°N) 68 

The study of temperature and precipitation variations in the Mediterranean is of paramount importance 69 

due to the region's sensitivity to climatic changes. The identification of the Mediterranean as a climate 70 

change 'hot spot', characterised by pronounced warming and reduced precipitation, underlines the 71 

urgency of deepening our understanding of regional climate dynamics and their responses to various 72 

environmental factors (Lionello and Scarascia, 2018). 73 

The Mediterranean climate, characterized by hot, dry summers and mild, wet winters, is subject to 74 

significant variations that can profoundly affect the region's water availability, biodiversity, agriculture, 75 

and human well-being. Understanding the drivers behind these variations is crucial for developing 76 

effective adaptation and mitigation strategies in response to ongoing and future climatic changes.  77 

Understanding the historic trends of temperature and precipitation in the Mediterranean region is pivotal 78 

to appreciating the present climate dynamics and anticipating future changes. The following figures 79 

illustrate the annual trends in temperature and precipitation across the Northern, Central, and Southern 80 

Mediterranean zones from 1901 to 2020, underscoring the region's susceptibility to climatic fluctuations 81 

and the profound impacts of environmental forcings. 82 

Figure 2 shows the annual temperature trend for each Mediterranean zone. A clear warming trend is 83 

evident, with temperatures rising over the past century, reflecting global patterns of climate change and 84 

regional responses to increasing greenhouse gas concentrations. 85 

Figure 3 depicts the annual precipitation trend within the same zones. Here, the variability and 86 

complexity of precipitation patterns are apparent, with notable fluctuations that pose challenges for 87 
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accurate modelling and prediction. These patterns are crucial for understanding the Mediterranean's 88 

water resources and their sustainable management in the face of climate change. 89 

The observed trends provide a backdrop for the questions this thesis seeks to answer, guiding our 90 

exploration of the intricate relationships between climate variables and the environmental forcings that 91 

influence them.  92 

In recent years, LSTM networks have gained prominence in climatic studies for their ability to capture 93 

the temporal dynamics of environmental data. Unlike traditional machine learning models, LSTM 94 

networks can remember information over long periods, making them particularly suitable for analysing 95 

climate data, where the influence of past events can persist and influence future conditions. This 96 

capability allows for a more nuanced understanding of the temporal relationships between 97 

environmental forcings and climatic responses, providing insights into the underlying mechanisms of 98 

climate variability and change. 99 

This study sets out to explore the use of LSTM networks in analysing and understanding the impact of 100 

'forcing variables' on temperature and precipitation variations in the continental Mediterranean region. 101 

 102 

 103 
Figure 2. Annual temperature trends in the three reference areas 104 

 105 
Figure 3. Annual rainfall trends in the three reference areas 106 

By integrating LSTM models with comprehensive datasets on CO2 levels, aerosol concentrations, 107 

climatic indices, and solar irradiance, this study aims to unravel the complex interactions between 108 

forcing variables and climate outcomes. Specifically, the research seeks to answer the following 109 

questions:  110 

• How do variations in CO2 levels and aerosol (both anthropogenic and natural, including 111 

volcanic) concentrations influence temperature and precipitation patterns in the continental 112 

Mediterranean region?  113 

• What role do climatic indices large scale processes external to the Mediterranean region (e.g., 114 

North Atlantic Oscillation, Atlantic Meridional Overturning Circulation, El Niño-Southern 115 

Oscillation) play in modulating temperature and precipitation variability in this region? 116 
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• To what extent does solar irradiance contribute to the observed climatic changes over the study 117 

period? 118 

By addressing these questions, this thesis aims to contribute to the broader understanding of climate 119 

dynamics in the Mediterranean region. Furthermore, it seeks to demonstrate the potential of LSTM 120 

networks as a valuable tool for climate research, offering new perspectives on the analysis of climatic 121 

data and the prediction of future climate scenarios. Through this investigation, we aspire to enhance our 122 

comprehension of the Mediterranean climate system, paving the way for informed decision-making in 123 

the face of climatic uncertainties. 124 

1.1 Background and Literature Review 125 

The Mediterranean region, characterized by its unique climatic patterns, has been the subject of 126 

extensive research due to its sensitivity to climate variability and change. Recent studies (Pappas et al., 127 

2021, Li et al., 2020) have increasingly focused on the analysis of climatic variations using advanced 128 

computational models, with a particular emphasis on the application of neural networks. This chapter 129 

provides an overview of the current knowledge on climate variations in the Mediterranean and reviews 130 

the literature on Long Short-Term Memory neural networks, highlighting their applications in 131 

climatological and environmental fields. It also discusses the impact of CO2, aerosols, climatic indices, 132 

and solar irradiance on the Mediterranean climate. 133 

The Mediterranean climate is influenced by a variety of environmental forcings, such as changes in 134 

atmospheric composition, land-use modifications, and variations in solar activity (Lionello et al., 2006). 135 

The research conducted by Pasini et al. is pivotal in examining the dynamics between various forcings 136 

and temperature across different scales of the climate system, highlighting the significant impact of 137 

anthropogenic factors on recent temperature trends as shown in their 2006 study (Pasini et al., 2006). 138 

Their further application of neural network methodologies in 2017 (Pasini et al., 2006) deepens our 139 

understanding of the intricate contributions of human activities, notably greenhouse gas and aerosol 140 

emissions, to global and regional climate alterations. These insights reflect the utility of advanced 141 

analytical approaches, like neural networks, in broadening the scope of climate change research beyond 142 

traditional methods. 143 

1.2 LSTM Neural Networks in Climatology 144 

The advent of LSTM neural networks has opened new avenues for analysing and predicting climatic 145 

variables. LSTM networks, known for their ability to learn from sequences of data over long periods, 146 

have proven to be particularly useful in modelling complex climatic systems where the influence of past 147 

events can extend far into the future. Recent applications of LSTM networks in climatology include sea 148 

surface temperature prediction (Hou, Siyun, et al., 2021), soil moisture and temperature prediction (Li, 149 

Qingliang, et al., 2022), and the assessment of climate change effects on dust activity (Hamidi, M., & 150 

Roshani, A., 2023). These studies demonstrate the versatility of LSTM networks in capturing the non-151 

linear dynamics of climatic processes and their potential for enhancing our understanding of climate 152 

variability and change. 153 

For instance, the study "Prediction of 3-D Ocean Temperature by Multilayer Convolutional LSTM" 154 

(Zhang, et al., 2020) presents an innovative approach to predicting ocean temperatures at various depths, 155 

highlighting the importance of subsurface temperature in understanding ocean dynamics. This research 156 

exemplifies the application of LSTM networks in capturing both horizontal and vertical temperature 157 

variations, providing valuable insights into the complex interactions within the oceanic component of 158 

the climate system. 159 

1.3 Impact of Environmental Forcings on the Mediterranean Climate 160 

The Mediterranean climate is influenced by various environmental forcings, including CO2 161 

concentrations, aerosols, climatic indices (e.g., North Atlantic Oscillation, El Niño-Southern 162 

Oscillation), and solar irradiance. Many studies underscore the complex interplay between these forcings 163 

and the Mediterranean climate (Lionello et al., 2006). Neural Networks have already been used to show 164 

the effects of aerosol concentrations and solar irradiance on precipitation patterns and temperature 165 

regimes in the Mediterranean region (Pasini et al., 2006). Moreover, the analysis of climate change 166 

effects on Iraq dust activity using LSTM (Hamidi, M., & Roshani, A., 2023) illustrates how regional 167 
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climatic variations, driven by environmental forcings, can have broader implications for air quality and 168 

public health. This underscores the importance of understanding the specific impacts of different 169 

forcings on the Mediterranean climate to inform mitigation and adaptation strategies. 170 

2 Data and methods 171 

Before delving into the specifics of our Long Short-Term Memory (LSTM) model implementation for 172 

climate study, it's crucial to understand the foundational principles of LSTM networks and how they 173 

operate. A feedforward neural network is a basic form of artificial neural network where the information 174 

moves in only one direction—from input nodes, through hidden layers, to output nodes, without cycles 175 

or loops. In these networks, each neuron in one layer has a weighted connection to neurons in the 176 

subsequent layer, and the final output is derived from a series of transformations that apply these weights 177 

to the input data. 178 

In contrast, Long Short-Term Memory (LSTM) networks, as illustrated in Figure 4, belong to a more 179 

complex type of networks known as recurrent neural networks (RNNs), which are designed to handle 180 

sequential data. Unlike feedforward networks, LSTMs can maintain information in 'memory' for long 181 

periods, which is crucial for tasks that require knowledge of previous events, such as climate data 182 

analysis. Indeed, a key parameter in preparing the input sequences for the network is the 'time step'. A 183 

time step in an LSTM network refers to the number of intervals the network looks back to learn from 184 

past data to predict future outcomes. 185 

The diagram highlights the key components of an LSTM unit: 186 

• 'A' represents the memory cell that stores values over arbitrary time intervals. 187 

• The input gate (σ), positioned on the left-hand side within each LSTM block, decides the extent 188 

to which new information from the current input Xt should be stored in the cell state. 189 

• The forget gate (σ), located below the input gate, determines which parts of the existing memory 190 

should be discarded. 191 

• The output gate (σ), found on the right-hand side, regulates the contribution of the memory cell 192 

to the output at time ht 193 

• The 𝑡𝑎𝑛ℎ  function prepares the cell state for output by scaling the values, facilitating the 194 

regulation of information flow within the network. 195 

These gates, depicted as yellow boxes and controlled by 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (σ) and 𝑡𝑎𝑛ℎ functions, collectively 196 

decide at each step what information is retained or removed, based on the current input, the previous 197 

output, and the past cell state. They ensure the network's ability to capture dependencies from long ago, 198 

which is indispensable for understanding complex systems like the climate. 199 

 200 

 201 
Figure 4. A schematic of an LSTM unit, illustrating the cell state ('A'), the flow of input Xt, and output ht, alongside the recurrent 202 
connections at each time step. Sigmoid functions (σ) regulate the input and forget gates, determining the flow and modification 203 
of information, while hyperbolic tangent functions (tanh) manage the memory cell's transformation of data. This configuration 204 
allows the network to maintain essential information over long sequences. 205 

While a feedforward network simply maps input to output, an LSTM network does so while also 206 

considering the sequence's history.  207 
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Climate variables exhibit complex temporal dynamics, wherein past events can significantly influence 208 

future conditions over diverse timescales. LSTM networks, with their long-term memory capacity and 209 

their proficiency in modelling nonlinear relationships, are uniquely suited for capturing these dynamics, 210 

offering a potent tool for comprehending and forecasting climate variability. 211 

Whereas feedforward networks are efficacious in modelling static and non-sequential relationships, 212 

LSTM networks excel in the processing of complex sequential data, thanks to their sophisticated 213 

structure that facilitates the tracking of information over time. This characteristic renders them ideal for 214 

applications necessitating an understanding of lengthy and intricate temporal dependencies, as is the 215 

case in climate studies. 216 

2.1 Long Short-Term Memory network preparation 217 

The preprocessing of data is a critical step in preparing inputs for the LSTM network. Our data consists 218 

of a comprehensive suite of forcing variables including CO2 concentrations, Stratospheric Aerosol 219 

optical depth, Total Solar Irradiance (TSI), and climate indices such as the North Atlantic Oscillation 220 

(NAO), Southern Oscillation Index (SOI), and Atlantic Multidecadal Oscillation (AMO). Prior to 221 

inputting into the LSTM, the datasets undergo several preprocessing stages:  222 

• Integration: Multiple data sources are combined to create a comprehensive feature set. Each 223 

dataset's temporal resolution is matched to ensure consistency.  224 

• Normalization: The data is normalized using the MinMaxScaler to adjust into a common scale, 225 

usually between 0 and 1, allowing the LSTM model to efficiently process the inputs without 226 

bias towards any particular scale of data.  227 

• Sequence Creation: The time-series data is converted into sequences that the LSTM can 228 

process.  229 

Each sequence contains information from past time steps to predict the next time step's outcome.  230 

For the implementation of our LSTM model, we employ a Sequential model from the TensorFlow Keras 231 

library, which allows us to stack layers in a linear fashion. The model consists of LSTM layers followed 232 

by a fully connected Dense layer. Our architecture is composed of an initial LSTM layer with 60 233 

neurons, an empirically determined configuration balancing complexity and computational efficiency. 234 

In defining the optimal architecture for our LSTM network, we adopted a methodical experimental 235 

approach. This involved iteratively fine-tuning the architecture by adjusting the number of layers, the 236 

number of nodes per layer, and particularly the duration of time steps, focusing on optimizing the 237 

model's performance. Through this experimental tuning, the best time step was determined to be 4 years 238 

for all temporal resolutions of the dataset used. The relu activation function is utilized for its proficiency 239 

in handling non-linear data and mitigating the vanishing gradient problem. This is followed by a Dense 240 

output layer with a single neuron to predict the target variable, which in this case is either temperature 241 

or precipitation. The model is compiled using the Adam optimizer and Mean Squared Error loss 242 

function, providing robustness against outliers and ensuring the convergence of gradients during 243 

training. 244 

To facilitate the training process, we divided the dataset into a training set and a testing set, allocating 245 

20% of the data for testing, consistent with standard practices in machine learning. This partition was 246 

executed using the Python command: 247 

 248 

 𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡(𝑥_𝑠𝑒𝑞, 𝑦_𝑠𝑒𝑞, 𝑡𝑒𝑠𝑡_𝑠𝑖𝑧𝑒 = 0.2, 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 42), 249 

 250 

ensuring a random yet reproducible selection of the 20% of data as the test set. Setting the random_state 251 

parameter guarantees the reproducibility of our data selection, a crucial factor for experimental validity. 252 

This methodology allows the model to be assessed on a dataset not encountered during the training 253 

phase, offering a more reliable measure of its generalization capability.  254 

To prevent overfitting and ensure that training ceases once the model's performance on a validation set 255 

no longer shows improvement, we utilized the EarlyStopping callback. Performance evaluation was 256 

conducted using the Mean Squared Error (MSE) and Mean Absolute Error (MAE) metrics, comparing 257 

the model's predictions with actual observations in the test set.  258 
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2.2 Multi-Temporal average data 259 

To conduct a thorough analysis of the climatic trends across different time scales within the 260 

Mediterranean region, it was essential to transform our original datasets, which were based on monthly 261 

averages, into a format conducive to multi-temporal analysis. This section elucidates the methodologies 262 

employed for aggregating the monthly data into seasonal and annual averages, alongside maintaining 263 

their original monthly format for a granular temporal analysis. This reformatting is pivotal for capturing 264 

the nuanced climatic dynamics across the Mediterranean and offers a comprehensive framework for 265 

examining temperature and precipitation variabilities on monthly, seasonal, and annual bases. 266 

• Monthly Averages: The primary dataset, inherently structured as monthly averages, was 267 

utilized directly to assess the short-term climatic fluctuations within each year, providing insight 268 

into the intra-annual variabilities of temperature and precipitation. 269 

• Seasonal Averages: the seasonal averages were computed by first mapping each month of our 270 

dataset to its corresponding meteorological season: Winter (December to February), Spring 271 

(March to May), Summer (June to August), and Autumn (September to November). We then 272 

calculated the mean of the climatic measurements for each of these seasonal groupings. This 273 

method provided a clearer view of the climate's rhythmic changes throughout the year, allowing 274 

us to pinpoint and analyse specific trends and variations inherent to each season. 275 

• Annual Averages: The annual averages were derived by aggregating the data over each 276 

calendar year, thus allowing us to analyse the broader, long-term climate trends and assess how 277 

temperature and precipitation have varied on an annual scale over the study period. 278 

This detailed data aggregation process was instrumental in enabling a multi-scaled analysis of climate 279 

variability, enhancing the depth of our understanding of the climatic changes occurring within the 280 

Mediterranean region. 281 

2.3 Dataset Description 282 

In this study, an array of datasets encompassing a range of climatic and environmental parameters was 283 

compiled.  284 

• The Climatic Research Unit Time Series (CRU TS v. 4.04) dataset for temperature, offering a 285 

spatial resolution of 0.5° by 0.5° latitude/longitude and extending from 1901 through 2020 286 

(Harris et al. 2020).  287 

• The Global Precipitation Climatology Centre's (GPCC) dataset, which offers a similar spatial 288 

resolution (Schneider et al., 2022).  289 

• CO2 concentrations data derived from the North American Carbon Program (Wei et al., 2014), 290 

providing a granular global atmospheric carbon dataset crucial for carbon cycle modelling. 291 

• Stratospheric Aerosol Loading data, obtained from the Goddard Institute for Space Studies, 292 

presenting vital aerosol optical depth estimations since the 1850s (Sato et al., 1993).  293 

• Total Solar Irradiance (TSI), essential for climate change studies due to their impact on Earth's 294 

radiative balance (Lean et al., 1995).  295 

• The Southern Oscillation Index (Ropelewski et al., 1987) 296 

•  The North Atlantic Oscillation (Allan et al., 1991) 297 

• The Atlantic Multidecadal Oscillation (Compo et al., 2011, Enfield et al., 2017),  298 

The datasets have been rigorously verified for completeness and processed with advanced statistical 299 

techniques to uphold the integrity of our climatic analysis. Each dataset, enriched with historical breadth, 300 

contributes to a nuanced understanding of climate variability, which is fundamental for projecting future 301 

climatic conditions in the Mediterranean basin. 302 

2.4 Score And Statistics 303 

2.4.1 Performance 304 

The efficacy of LSTM networks has been rigorously assessed for the climatic divisions of the 305 

Mediterranean - Northern, Central, and Southern zones. These advanced models were evaluated for their 306 

predictive prowess in both temperature and precipitation across annual, monthly, and seasonal data 307 
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scales. The analysis was anchored on the coefficient of determination R2 and Relative MAE Error, both 308 

pivotal metrics in climatology for model accuracy evaluation. 309 

The coefficient of determination 𝑅2, quantifies the proportion of variance in the dependent variable that 310 

is predictable from the independent variable(s). It provides a measure of how well observed outcomes 311 

are replicated by the model, based on a normalized scale from 0 to 1. A value of 𝑅2 closer to 1 indicates 312 

a strong correlation and significant predictive capability. Mathematically, 𝑅2 is defined as: 313 

 314 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 315 

 316 

where 𝑦𝑖 are the actual values, �̂�𝑖 are the values predicted by the model, and �̅� is the mean of the actual 317 

values. 318 

The Relative MAE Error, on the other hand, relates the Mean Absolute Error (MAE) to the Mean 319 

Absolute Deviation (MAD) of the actual values, thereby providing a normalized measure of errors that 320 

accounts for the dispersion of the data. A lower value indicates that the model has errors that are minor 321 

relative to the inherent variability of the data. The Relative MAE Error is given by the ratio: 322 

 323 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑀𝐴𝐸 𝐸𝑟𝑟𝑜𝑟 =
𝑀𝐴𝐸

𝑀𝐴𝐷
 324 

 325 

Where MAD and MAE are calculated as: 326 

𝑀𝐴𝐷 =  
1

𝑛
∑|𝑦𝑖 − �̅�|

𝑛

𝑖=1

 327 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 328 

 329 

In this investigation, these metrics serve as the primary supports for assessing model efficacy, enabling 330 

us to dissect the LSTM network’s ability to simulate climate phenomena with respect to the diverse 331 

temporal and spatial climatology of the Mediterranean region. 332 

2.4.2 Ablation 333 

Following the establishment of our LSTM model, an ablation study was undertaken to discern the 334 

influence of individual forcing variables, on the model's predictive accuracy. This was achieved by 335 

systematically modifying specific input variables within the test dataset to their mean values across the 336 

dataset. This method simulates the absence of specific influences of these variables without altering the 337 

architecture or weights of the LSTM model, a process known as 'feature ablation.' 338 

To quantify the impact of each ablated forcing variable, we employed a metric termed Score Difference, 339 

which is calculated as follows: 340 

 341 

𝑆𝑐𝑜𝑟𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑎𝑏𝑙𝑎𝑡𝑒𝑑 − 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 342 

 343 

where 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the model's loss score evaluated with all forcing variables included, and  344 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑎𝑏𝑙𝑎𝑡𝑒𝑑 is the loss score evaluated with one of the forcing variables set to its mean value 345 

and the loss score is simply the Mean Squared Error (MSE) defined as: 346 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

 347 

 348 

This score specifically refers to the loss function value returned by the 𝑚𝑜𝑑𝑒𝑙. 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒() method in 349 

TensorFlow, which measures the model's prediction error; a lower score indicates better model 350 

performance. Thus, a positive ScoreDifference signifies that the removal (or modification to the mean) 351 
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of the feature has resulted in increased prediction error, underscoring the importance of that feature in 352 

the model's predictions. 353 

This ablation process enables us to unravel the individual and collective significance of environmental 354 

forcing variables in the LSTM network's ability to reconstruct climatic trends, thereby providing a more 355 

granular understanding of the model's inner workings and the complex interplay among climatic drivers. 356 

To further enhance the comprehensiveness of our analysis, it's important to note that the entirety of the 357 

dataset was utilized for specific visual representations and ablation tests. This approach allowed us to 358 

generate a complete view of the model's capabilities across all available data, enriching our 359 

understanding of its performance and the impact of forcings on Mediterranean climate variability. This 360 

distinction between the training/testing split and the use of the complete dataset for certain analyses is 361 

crucial for a nuanced interpretation of our results. 362 

3 Results 363 

Before delving into the detailed results obtained from the testing dataset, we highlight that some of the 364 

analyses, including visual representations in figures such as Figure 5 and ablation studies, were 365 

conducted using the full dataset. This methodological choice was made to capture the model's broader 366 

applicability and to deeply investigate the influence of various input features on climate predictions. 367 

The detailed quantitative analysis of our LSTM models, specifically the R² and Relative Mean Absolute 368 

Error metrics that demonstrate their predictive performance, can be thoroughly reviewed in Table 1 and 369 

in Table 2 in the Appendix. 370 

For an in-depth understanding of the influence of various forcing variables on our models, the numerical 371 

values derived from our ablation studies are tabulated in Table 3 and Table 4 in the Appendix. 372 

3.1 Annual Reconstruction Performance 373 

Evaluating the annual performance of LSTM networks for reconstructing precipitation and temperature 374 

across the different Mediterranean zones yielded nuanced insights into the models' capabilities.  375 

The R2 (Figure 7) and Relative Mean Absolute Error (Rel. MAE) (Figure 8) were instrumental in 376 

assessing model performance with a keen focus on their interpretability and implications for climatic 377 

modelling. 378 

In the Central zone, the LSTM model for annual precipitation demonstrated an R2 of -0.034 (Figure 7), 379 

hinting at challenges in accurately modelling precipitation cycles. The Rel. MAE was 0.870 (Figure 8), 380 

suggesting that its average error is within the limits the typical data variability. This is visually 381 

underscored in Figure 6, which compares the actual monthly precipitation values with those 382 

reconstructed by the LSTM model over time. The visual representation starkly demonstrates the LSTM 383 

model's limitation in capturing the variability of precipitation patterns. While the reconstructed values—384 

indicated by the red line—generally follow the mean trajectory of the actual data, shown in blue, they 385 

fail to replicate the variability and the peaks and troughs characteristic of the precipitation 386 

measurements. This discrepancy highlights the model's tendency to smooth out the data, capturing only 387 

the general trend rather than the precise fluctuations over time. 388 

 389 

 390 
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 391 
Figure 5. Reconstructed vs. Actual annual mean temperature in the Southern Mediterranean: This graph showcases the 392 
LSTM network's ability to accurately model rising temperature patterns over time, mirroring the observed warming trend in 393 
the region and highlighting the model's proficiency in climate trend analysis. 394 

Conversely, the model’s performance in temperature prediction was more promising with an R2 of 0.517, 395 

indicating that over half of the variance in temperature data could be accounted for by the model. A Rel. 396 

MAE of 0.729 for the Central zone’s temperature further reflects the model’s competence in this aspect, 397 

with errors small in comparison to the overall data variability (Figure 8). 398 

In the Northern and Southern zones, similar patterns were observed. The Northern zone's annual 399 

precipitation model had a slightly positive R2 of 0.011 and a Rel. MAE of 0.839, while the Southern 400 

zone exhibited an R2 of -0.892, which was significantly lower, and a Rel. MAE of 0.792. These figures 401 

indicate a disparity in the model's ability to generalize across the zones, with particular difficulty in the 402 

Southern zone where the model was less effective in capturing the variance. 403 

For temperature, the Northern and Southern zones showed R2 values of 0.549 and 0.680 respectively, 404 

revealing a stronger predictive performance. The Rel. MAEs were 0.786 and 0.592, underscoring that 405 

the model's temperature predictions were relatively close to the actual data, especially in the Southern 406 

zone, which presented the lowest error relative to variability. The competence in temperature 407 

reconstruction is visually corroborated by Figure 5, which displays the LSTM model's aptitude in tracing 408 

the incremental trend of temperature over the years though missing the observed interannual variability. 409 

 410 

 411 
Figure 6. Reconstructed vs. Actual annual precipitation in the Central Mediterranean: The graph illustrates the challenges 412 
faced by the LSTM network in accurately capturing the high variability of precipitation patterns. While the reconstructed 413 
values trace the general mean of actual precipitation data, they significantly smooth out the extreme fluctuations, underscoring 414 
a need for model refinement in capturing the complexity of precipitation dynamics in climate analysis. 415 
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 416 

 417 
Figure 7. "Comparative visualization of R2 values for temperature and precipitation models across different regions and time 418 
periods, showcasing the variance explained by each model in the context of climate data analysis. 419 

 420 
Figure 8. Comparative visualization of Relative Mean Absolute Error (Rel. MAE) for temperature and precipitation models, 421 
reflecting the average prediction accuracy across various regions and seasonal periods within the scope of climate data 422 
analysis. 423 

3.2 Monthly Reconstruction Performance 424 

For the Central Mediterranean zone, the LSTM models displayed a remarkable adeptness in temperature 425 

reconstruction, achieving an R2 of 0.958, suggesting a strong correlation with the actual temperature 426 

values. The Rel. MAE for this region stood at 0.173, indicating the errors made by the model were 427 

minimal in relation to the variability of the actual data. This proficiency in capturing temperature trends 428 

is vividly demonstrated in Figure 9, where a smoothed comparison of real versus reconstructed monthly 429 

mean temperatures (using a 12-month moving average) highlights the LSTM model's precision. The 430 

graph summarises the model's ability to track the actual temperature trend without the clutter of 431 

individual monthly fluctuations, showcasing the accurate reconstruction capabilities for the region and 432 

emphasizing the LSTM's effectiveness in climate trend analysis.  433 

Conversely, the reconstruction of precipitation posed a greater challenge. In the Northern zone, the 434 

LSTM models grappled with capturing the variability, reflected in a negative R2 value of -0.019, which 435 

denotes that the model’s predictive capability was slightly below the baseline of the mean model. This 436 

was further reinforced by a Rel. MAE close to 1, signalling that the errors were commensurate with the 437 

actual data's dispersion, thereby implying low predictive reliability for precipitation in this particular 438 

setting. 439 

The Southern zone captured a more promising picture for temperature reconstruction, with an R2 of 440 

0.934, indicative of the model's robust alignment with the actual temperature trends. The model's 441 

precision was accentuated by a Rel. MAE of 0.226, reflecting smaller deviations from the observed data 442 

when compared to the central tendency. 443 
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These findings combine to form a comprehensive understanding of the LSTM network's reconstructive 444 

skill set over a monthly scale, showcasing its strengths in discerning temperature patterns while 445 

concurrently highlighting the areas where precipitation reconstruction requires further refinement. The 446 

relative success in temperature reconstruction across all zones suggests an intrinsic capacity of the 447 

LSTM models to encapsulate the underlying temporal patterns governing temperature variations. In 448 

contrast, the heightened Rel. MAEs for precipitation underscore the inherent complexity of hydrological 449 

cycles and their manifestation in precipitation data. 450 

The monthly scale offers a lens into the nuanced behaviour of climate variables, and the LSTM's 451 

performance herein lays bare the multifaceted nature of environmental data reconstruction. While 452 

temperature data lend themselves more readily to LSTM-based reconstruction, the heterogeneity and 453 

stochastic elements intrinsic to precipitation ensure it remains an area ripe for ongoing research and 454 

model development. 455 

 456 

 457 
Figure 9. Smoothed Real vs. Monthly Mean Temperature Values in the Northern Mediterranean: This graph illustrates the 458 
exceptional predictive performance of the LSTM model with a moving average applied to monthly data for clarity. The 459 
moving average, using a 12-month window, highlights the model's ability to track the actual temperature trend without the 460 
clutter of individual monthly fluctuations, showcasing the accurate reconstruction capabilities for the region. 461 

3.3 Seasonal Reconstruction Performance 462 

In the Central zone during Autumn, the models faced significant challenges, as evidenced by a negative 463 

R2 value of -0.257, which indicates that the models were unable to capture the seasonal variability 464 

effectively. This difficulty in modelling is supported by a Rel. MAE greater than 1, suggesting that the 465 

model's errors are more pronounced than the natural variability of the data. 466 

Winter presented a contrasting scenario, with the LSTM models for the Southern zone yielding an R2 467 

Squared of 0.295, reflecting a moderate ability to reconstruct the seasonal precipitation patterns. The 468 

Rel. MAE of 0.849 for this region implies that the reconstruction errors are relatively lower than the 469 

seasonal data variability, hinting at a decent model performance in capturing the winter precipitation 470 

dynamics. 471 

For temperature, the LSTM models performed with more consistency across seasons. The Southern 472 

zone, in particular, displayed impressive results in the reconstruction of Autumn temperatures, with an 473 

R2 of 0.634, denoting a model that aligns well with the actual temperature changes. This is further 474 

supported by a Rel. MAE of 0.604, reinforcing the model's capability to reconstruct temperature with a 475 

good degree of precision relative to the underlying variability. 476 

This seasonal assessment underscores the LSTM models' strengths and weaknesses in reconstructing 477 

climatic variables. While the models generally reconstruct temperature effectively, as the Southern zone 478 

demonstrates across multiple seasons, precipitation remains a more intricate variable to model. The 479 

fluctuating R2 values and the Relative MAE Errors above 1 for precipitation reconstruction reveal the 480 

greater complexity and stochastic nature of precipitation patterns. 481 
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The varying performance across different seasons and zones illuminates the nuanced relationship 482 

between LSTM model predictions and the inherent variability present in the climatic data. It affirms that 483 

while LSTM models hold potential in reconstructing temperature patterns with considerable accuracy, 484 

precipitation, requires a nuanced approach and further model enhancements for better alignment with 485 

observed data. 486 

3.4 Impact of Annual Forcings 487 

In the context of assessing the impact of annual forcings on model performance, it is pertinent to mention 488 

that our ablation studies were executed leveraging the complete dataset. This enabled a comprehensive 489 

evaluation of how each environmental factor individually affects the model’s ability to predict climate 490 

variability, providing insights that are instrumental for refining our model and understanding the 491 

complex dynamics of the Mediterranean climate system. 492 

The annual assessment of climatic drivers on temperature and precipitation reconstructions provides 493 

insightful contrasts, as visually depicted in Figure 10 for temperature. The chart shows that the ablation 494 

of CO2 results in a notable deviation from the actual temperature rise, emphasizing its fundamental role 495 

in capturing the warming trend. The reconstruction without CO2 flattens the increasing temperature 496 

curve, highlighting the gas’s significant contribution to recent warming trends. 497 

Looking at the Score Differences (Figure 11, left panel), CO2 remains the primary driver in the Central 498 

Mediterranean, with a value of 0.0268, underscoring its significant impact on the warming trend. 499 

Precipitation (Figure 11, right panel) reconstructions, however, show a varying influence of CO2 across 500 

the regions, with the most substantial effect in the South Mediterranean (ScoreDifference of 0.0047), 501 

followed by the Central (0.0019) and North (0.00004) areas. This gradient may reflect regional 502 

differences in CO2's hydrological impact, from precipitation patterns to intensity. 503 

 504 
Figure 10. Temperature Ablation Study for Central Mediterranean: This chart compares actual temperatures against model-505 
predicted values with the successive ablation of individual climate inputs. Notably, the ablation of CO2 data results in a 506 
significant divergence from the increasing trend of actual temperatures, almost nullifying the observed warming effect. This 507 
stark contrast illustrates CO2's critical role in temperature rise and the effectiveness of the model in capturing this when 508 
CO2 is included. 509 

The Aerosol Optical Depth presents a contrasting effect: it has a minor influence on temperature but 510 

shows a more pronounced impact on precipitation, especially in the North Mediterranean with a 511 

ScoreDifference of 0.0014, possibly due to its role in cloud formation and albedo effects. The Atlantic 512 

Multidecadal Oscillation is another feature that exhibits divergence between temperature and 513 

precipitation. While it significantly affects temperature (with a ScoreDifference of 0.0033 in the South), 514 

it has a negative ScoreDifference for precipitation in the North and South Mediterranean, indicating a 515 

complex interplay with regional hydroclimate. However, the poor quality of the reconstruction of 516 

precipitation suggest caution in the interpretation of these results. 517 

The North Atlantic Oscillation demonstrates modest effects across both temperature and precipitation 518 

reconstructions, with a more marked negative impact on precipitation in the South (ScoreDifference of 519 
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-0.0006). The Total Solar Irradiance and Southern Oscillation Index show marginal and sometimes 520 

negative ScoreDifferences, suggesting a subtle influence on the annual climatic patterns in the 521 

Mediterranean region. 522 

3.5 Impact of Monthly and Seasonal Forcings 523 

On a monthly scale, the ScoreDifferences for temperature (Figure 12, left side) highlight the dominance 524 

of CO2, particularly in the South Mediterranean with a striking ScoreDifference of 0.0470. Precipitation 525 

(Figure 12, right side) is also significantly influenced by CO2, especially in the Central Mediterranean 526 

(ScoreDifference of 0.0018). Notably, the Atlantic Multidecadal Oscillation shows the highest monthly 527 

ScoreDifference in the Central Mediterranean for precipitation at 0.0076, far surpassing its influence on 528 

temperature. This suggests that AMO could be a key factor in monthly precipitation variability.  529 

Seasonally, the impact of these forcings on precipitation and temperature exhibits regional specificity 530 

(Figure 14 and Figure 15). 531 

 532 

  
Figure 11. Ablation study results for mean annual temperature and precipitation across three distinct Mediterranean zones. 533 
The bars indicate the score differences when specific climate features, such as CO2 and AOD levels, are excluded from the 534 
model, reflecting their relative importance in predicting regional climate variations. 535 

For instance, the CO2 ScoreDifference peaks in winter for precipitation in the Central Mediterranean 536 

(0.0108) and in autumn for temperature in the South (0.0123). This demonstrates the strong seasonal 537 

influence of CO2 on regional climate, particularly in terms of hydrological responses. The NAO shows 538 

a complex seasonal pattern, with a significant positive ScoreDifference in summer precipitation in the 539 

North Mediterranean (0.0021) and a negative influence on temperature in the autumn across the region. 540 

  
Figure 12. Ablation study results for mean monthly temperature and precipitation across three distinct Mediterranean zones. 541 
The bars indicate the score differences when specific climate features, such as CO2 and AOD levels, are excluded from the 542 
model, reflecting their relative importance in predicting regional climate variations. 543 
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 544 
Figure 13. Seasonal ablation study results for mean temperature across the Mediterranean's northern, central, and southern 545 
zones. Each bar represents the impact on model performance, measured by score difference, when excluding specific climate 546 
drivers for winter, spring, summer, and autumn. The chart highlights the varying importance of these drivers across different 547 
seasons, with CO2 consistently showing the largest impact, indicating its crucial role in seasonal temperature variability within 548 
the region. 549 

 550 
Figure 14. Seasonal ablation study results for precipitation in the central, northern, and southern Mediterranean regions. The 551 
depicted score differences upon removal of specific climatic drivers, showcase their differential influences on predicting 552 
seasonal precipitation patterns across these zones. 553 

The AOD and TSI impacts are modest across the seasons, yet they present interesting patterns, such as 554 

the AOD’s peak impact on winter precipitation in the North (ScoreDifference of 0.0018), possibly linked 555 
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to seasonal emission variations. Meanwhile, TSI shows a negative ScoreDifference for autumn 556 

precipitation in the Central region (-0.0015), hinting at the nuanced relationship between solar radiation 557 

and seasonal weather patterns. 558 

4 Conclusion 559 

This thesis has used LSTM networks to analyse the influence of environmental forcings on climate 560 

variability of temperature and precipitation in the Mediterranean. The results underscore the primacy of 561 

CO2 across all examined temporal resolutions and geographical areas for temperature reconstruction, 562 

affirming its critical role amidst anthropogenic factors in climate modeling. 563 

The analysis has highlighted the LSTM's adeptness in modelling temperature. Notably, the ablation 564 

study revealed the nuanced impact of various forcings such as TSI, AOD, and climatic indices, 565 

emphasizing the complexity of their interactions with the regional climate system and their important 566 

role on temperature variations at monthly scale. However, it has also revealed inherent challenges in 567 

reconstructing precipitation at all time scales. This issue requires further investigations for a proper 568 

identifying the source of the model failure, which is disappointing particularly for NAO, whose role on 569 

Mediterranean precipitation is well documented in the literature. 570 

Moving forward, this work underscores the importance of refining models by incorporating datasets that 571 

offer greater specificity and broader input variables, especially to enhance precipitation reconstruction. 572 

Precision in climate modelling relies not only on data resolution but necessitates the careful integration 573 

of complex variables influencing precipitation patterns. As the Mediterranean region continues to serve 574 

as a focal point for understanding the intricacies of climate change, this LSTMs can contribute to a 575 

foundational understanding and aid in the development of more resilient and informed climate strategies. 576 

In closing, the integration of LSTM networks within climatological research can provide not only a 577 

deeper insight into the present climate dynamics but also opened doors for innovative approaches to 578 

forecast future conditions. This endeavor sets a precedent for future studies to build upon, potentially 579 

incorporating broader datasets, exploring alternative modeling techniques, and extending the analytical 580 

framework to include more diverse environmental forcings. The potential to refine and enhance these 581 

models is vast, and as climate science evolves, so too will the tools we use to interpret its complexities. 582 
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A. APPENDIX: Evaluation tables 644 
 645 

Area Metric Annual Monthly Winter Spring Summer Autumn 

North 
R² 0.562 0.912 0.120 0.264 0.111 0.189 

Rel. MAE 0.770 0.262 0.980 0.905 0.914 0.824 

Centre 
R² 0.529 0.954 0.052 0.176 0.308 0.183 

Rel. MAE 0.710 0.187 0.943 0.818 0.771 0.861 

South 
R² 0.681 0.961 -0.084 0.489 0.447 0.627 

Rel. MAE 0.594 0.167 0.999 0.687 0.753 0.617 
Table 1. Comparative Performance Metrics of LSTM Models for Temperature Reconstruction. This table summarizes the 646 
coefficient of determination (R²) and Relative Mean Absolute Error (Rel. MAE) for annual, monthly, and seasonal temperature 647 
reconstructions across the Northern, Central, and Southern Mediterranean regions. 648 

Area Metric Annual Monthly Winter Spring Summer Autumn 

North 
R² -0.048 -0.032 -0.240 -0.208 -0.039 -0.250 

Rel. MAE 0.823 1.006 1.027 1.108 0.996 1.136 

Centre 
R² -0.068 0.433 0.094 -0.241 -0.129 -0.175 

Rel. MAE 0.847 0.693 0.945 1.160 1.083 1.075 

South 
R² -1.016 -0.004 0.296 -0.154 0.002 -0.286 

Rel. MAE 0.794 0.996 0.868 1.101 1.013 1.161 
Table 2. Performance Evaluation of LSTM Models for Precipitation Reconstruction. Displayed here are the R² and Rel. MAE 649 
values reflecting the models' predictive accuracy for annual, monthly, and by-season precipitation data, segmented by the 650 
Northern, Central, and Southern zones of the Mediterranean. 651 

Area Feature Annual Monthly Winter Spring Summer Autumn 

Nord 

CO2 0.02049 0.01520 0.00478 0.01284 0.01593 0.00473 

AOD 0.00031 0.00592 0.00021 -0.00012 0.00025 -0.00015 

TSI 0.00013 0.00722 -0.00010 0.00052 -0.00005 -0.00096 

NAO 0.00039 0.02560 -0.00040 0.00112 -0.00024 -0.00072 

SOI 0.00014 0.00829 -0.00004 0.00015 0.00010 0.00000 

AMO 0.00147 0.01243 -0.00009 0.00235 0.00239 0.00188 

Centre 

CO2 0.02680 0.02103 0.00447 0.01698 0.01873 0.00551 

AOD 0.00020 0.00606 0.00088 0.00092 0.00064 -0.00000 

TSI 0.00087 0.01099 -0.00082 0.00106 -0.00042 -0.00018 

NAO -0.00006 0.02007 -0.00054 0.00043 -0.00034 -0.00074 

SOI 0.00018 0.00862 0.00010 0.00004 0.00058 0.00004 

AMO 0.00295 0.01745 0.00006 0.00130 0.00239 0.00266 

South 

CO2 0.02322 0.04701 0.00414 0.01890 0.01500 0.01230 

AOD -0.00003 0.01827 0.00069 0.00050 0.00019 0.00002 

TSI -0.00008 0.00700 -0.00031 -0.00020 -0.00040 0.00009 

NAO -0.00015 0.01917 0.00004 0.00033 -0.00035 0.00011 

SOI 0.00005 0.02873 0.00053 -0.00052 0.00029 0.00000 

AMO 0.00331 0.03719 0.00152 0.00283 0.00128 0.00443 
Table 3. Ablation Study Scores for Temperature Reconstruction Models Across Mediterranean Regions. This table outlines the 652 
influence of individual climatic features on the annual, monthly, and seasonal temperature by presenting the score differences 653 
when each feature is excluded from the LSTM models. 654 

 655 

 656 

 657 

 658 

 659 

 660 
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Area Feature Annual Monthly Winter Spring Summer Autumn 

Nord 

CO2 0.00004 0.00005 -0.00089 -0.00161 0.00006 -0.00100 

AOD 0.00143 0.00025 0.00177 0.00043 0.00106 0.00052 

TSI -0.00024 0.00004 -0.00154 -0.00093 -0.00089 -0.00133 

NAO 0.00058 -0.00007 -0.00170 -0.00166 0.00207 -0.00108 

SOI 0.00086 0.00026 0.00069 0.00139 0.00174 0.00038 

AMO -0.00023 0.00092 0.00012 -0.00060 0.00048 -0.00049 

Centre 

CO2 0.00187 0.00177 0.01084 0.00069 0.00065 0.00029 

AOD 0.00118 0.00208 0.00224 0.00039 0.00139 0.00047 

TSI 0.00040 0.00121 0.00071 0.00024 -0.00034 -0.00146 

NAO 0.00029 0.00521 0.00208 0.00057 0.00124 0.00018 

SOI 0.00173 0.00591 0.00397 0.00103 0.00136 0.00064 

AMO 0.00021 0.00756 0.00403 0.00040 -0.00120 -0.00135 

South 

CO2 0.00471 0.00021 0.00388 0.00014 0.00079 0.00041 

AOD 0.00060 0.00020 0.00047 0.00036 0.00111 0.00092 

TSI -0.00048 0.00005 0.00067 -0.00020 0.00025 0.00152 

NAO -0.00061 0.00007 0.00076 -0.00008 0.00101 0.00076 

SOI 0.00113 0.00015 0.00082 0.00050 0.00116 0.00046 

AMO -0.00076 0.00054 0.00138 -0.00092 -0.00008 0.00014 
Table 4. Ablation Study Results for Precipitation Reconstruction Models in the Mediterranean Zones. Detailed here are the 661 
score differences for annual, monthly, and seasonal, illustrating the impact of removing specific climatic drivers on the LSTM 662 
models' accuracy in precipitation forecasting. 663 


